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Abstract: Autism spectrum disorder (ASD) is a neurological disorder in which a 

significant number of the children experience a developmental regression characterized by 

a loss of previously acquired skills and abilities. Typically reported are losses of verbal, 

nonverbal, and social abilities. Several recent studies suggest that children diagnosed with 

an ASD have abnormal sulfation chemistry, limited thiol availability, and decreased 

glutathione (GSH) reserve capacity, resulting in a compromised oxidation/reduction 

(redox) and detoxification capacity. Research indicates that the availability of thiols, 

particularly GSH, can influence the effects of thimerosal (TM) and other mercury (Hg) 

compounds. TM is an organomercurial compound (49.55% Hg by weight) that has been, 

and continues to be, used as a preservative in many childhood vaccines, particularly in 

developing countries. Thiol-modulating mechanisms affecting the cytotoxicity of TM have 

been identified. Importantly, the emergence of ASD symptoms post-6 months of age 

temporally follows the administration of many childhood vaccines. The purpose of the 

present critical review is provide mechanistic insight regarding how limited thiol 

availability, abnormal sulfation chemistry, and decreased GSH reserve capacity in children 
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with an ASD could make them more susceptible to the toxic effects of TM routinely 

administered as part of mandated childhood immunization schedules. 
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1. Introduction 

Autism spectrum disorder (ASD) is defined by qualitative impairments in social interaction, 

qualitative impairments in communication, and restricted and stereotyped patterns of behavior, 

interests, and activities [1]. Although an ASD diagnosis is defined by these three core features, recent 

investigations have described many health, physical, or behavioral co-morbid conditions associated 

with an ASD. For example, children diagnosed with an ASD were found to be more likely to have 

headaches/migraines, respiratory and food allergies [2], and infections [3] than typically developing 

children. Geier et al. [4] have identified other physical symptoms in children with ASD, such as 

gastrointestinal disturbances, incontinence, sleep problems, eating disorders, and sensory processing 

issues. Two significant co-morbidities associated with ASD are intellectual disabilities and  

epilepsy [5,6]. If autism is understood not only as a diagnosis governed by psychological criteria but 

also physical symptoms, this suggests that there are metabolic biomarkers and predisposing factors that 

can be identified and consistently associated with ASD. 

A significant number of children with an ASD experience a developmental regression characterized 

by a loss of previously acquired skills and abilities [7,8]. Many parents report that their child was 

developmentally normal until sometime after birth, typically 15–24 months, at which time the child 

began to regress or deteriorate [9–12]. Typically reported are losses of verbal, nonverbal, and social 

abilities [8,10–14]. The reported incidence of regression in autism varies in different studies from 15% 

to 62% of the cases studied [7,8,13–16]. It is apparent that children diagnosed with an ASD generally 

divide into three groups: an early onset group, a regression group, and a heterogeneous, mixed group [8]. 

In addition, some children with ASD improve (to varying degrees) after regression (with and without 

intervention) [17]. 

Several studies have sought to objectively evaluate the phenomenon of autistic regression early in 

life. For example, Werner and Dawson [18] evaluated home videotapes of children with autism 

between their first and second birthday parties, with and without a reported history of regression, as 

well as videotapes of typically developing children. Analyses revealed that infants diagnosed with an 

ASD characterized by regression show similar use of joint attention and more frequent use of words 

and babble compared with typical infants at 12 months of age. In contrast, infants diagnosed with an 

ASD characterized by early onset of symptoms and no regression displayed fewer joint attention and 

communicative behaviors at 12 months of age. By 24 months of age, both groups of toddlers 

diagnosed with an ASD displayed fewer instances of word use, vocalizations, declarative pointing, 

social gaze, and orienting to name as compared with typically developing 24-month-olds.  

Similarly, Ozonoff et al. [19], in a prospective longitudinal study, evaluated the emergence of the 

early behavioral signs used to make an ASD diagnosis, including gaze to faces, social smiles, and 

directed vocalization, coded from video and rated by examiners evaluating study subjects at 6, 12, 18, 
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24, and 36 months of age. These investigators observed that the frequency of gaze to faces, shared 

smiles, and vocalizations to others were highly comparable between groups at 6 months of age, but in 

the group later diagnosed with an ASD, significantly declining trajectories were apparent over time. 

Group differences were significant by 12 months of age on most variables. These investigators 

concluded that their results suggest that behavioral signs of ASD are not present at birth, as once 

suggested by Kanner, but rather emerge over time through a process of diminishment of key social 

communication behaviors, and that more children than previously thought may present with a 

regressive course. 

Although the reasons for the regression in ASD remain controversial, anecdotal reports and one 

study [13] suggest that the majority of parents of children diagnosed with an ASD who have 

experienced a regression, say that their child regressed following vaccinations. Goldberg et al. [13] 

found that the event mentioned by the majority of parents (67.6%) as concurrent with loss of skills was 

immunization. From a more objective point of view, it is clear that the emergence of ASD symptoms 

post-6 months of age, as described in the aforementioned section, follows the administration of many 

childhood vaccines temporally, given in accordance with the immunization schedule during the first 

six months of life. 

Several studies suggest that children diagnosed with an ASD have abnormal sulfation chemistry, 

limited thiol availability, and decreased glutathione (GSH) reserve capacity, with a resulting and 

subsequent compromised oxidation/reduction (redox) and detoxification capacity [20–23]. For 

individuals who are thus compromised in regard to detoxification and/or redox, there is an increased 

and explicable vulnerability to brain insult. 

The purpose of the present critical review is to provide mechanistic insight regarding how limited 

thiol availability, abnormal sulfation chemistry, and decreased GSH reserve capacity in children 

diagnosed with an ASD, particularly those who show evidence of regression, could make them more 

susceptible to the toxic effects of thimerosal (TM), the mercury (Hg)-based compound used as a 

preservative in many childhood vaccines, past and present. This review begins with an overview of the 

use of TM in vaccines. 

2. Research Evidence 

2.1. Use of TM in Vaccines 

TM (sodium ethyl-Hg thiosalicylate, C9H9HgNaO2S), an organomercurial compound (49.55% Hg 

by weight), has been, and continues to be, used as a preservative in many childhood vaccines.  

For example, in the United States until the early 2000s, all of the tetanus-containing vaccines  

(e.g., the diphtheria-tetanus-pertussis (DTP), diphtheria-tetanus (DT), tetanus toxoid (TT), and 

diphtheria-tetanus-acellular-pertussis (DTaP)), and, as they were approved, the hepatitis B (HepB), 

Haemophilus influenza type b (Hib), and meningococcal meningitis A, C, Y, and W-135 vaccines 

were preserved with TM, most at a level of 0.01% TM. Then, as they were approved [24], reduced-TM 

formulations and finally, no-TM formulations began to displace the TM-preserved formulations, but 

the TM-preserved formulations were not withdrawn from the market. 
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With an increasing supply of reduced-TM and no-TM vaccines on the market, the expectation was 

that total exposure to TM would decrease sharply; however, this assumption proved to be inaccurate 

due to changes in the recommendations for immunization. Starting in April of 2002, the Centers for 

Disease Control (CDC) made a recommendation that flu shots be given to infants 6-to-23 months of 

age, when the only approved influenza vaccine for that age group was Sanofi Pasteur’s Fluzone® 

which was preserved with TM [25]. In April 2002, the CDC reiterated its recommendation that 

pregnant women in their second and third trimesters be given a flu shot, again when all flu shots were 

TM preserved. 

Additionally, through 2010, the CDC progressively widened the age range for annual flu 

vaccination until, effectively, young children were recommended to get two doses of flu vaccine 

initially and then receive an additional dose annually for the rest of their lives. In regard to pregnant 

women, CDC also removed the “second-and-third-trimester” restriction on flu shots [26–28]. 

Thus, even though reduced-TM and no-TM formulations were eventually approved by the FDA, 

exposure to TM through vaccination has remained widespread in the US. In 2013, more than half of all 

influenza vaccine doses are still TM-preserved. The net effect has been that, on average, lifetime Hg 

exposure from vaccines has actually increased compared to the lifetime exposure that a vaccinated 

person would have received under the CDC’s pre-2000 recommended vaccination schedule. Estimates 

are that the maximum lifetime exposure to TM a vaccinated person may receive is now more than 

double what it would have been had the pre-2000 vaccination schedule been maintained. Presently, in 

the United States, TM also remains a component in some other FDA-approved vaccine formulations 

including one DT and DTaP formulation, one multi-dose meningococcal meningitis vaccine, and a 

multi-dose TT vaccine [29]. Therefore, on average, there has been no significant decrease of TM 

exposure in vaccine-schedule-compliant children in the USA. 

Likewise, prenatal exposure to Hg via vaccines continues to occur through the influenza vaccine 

still administered to pregnant women that was first recommended by the CDC in 1997 [30], since 

many of the influenza vaccines still, to date, contain TM [31,32]. The amount of Hg present in 

vaccines containing TM as a preservative nominally ranges from 12.5 μg Hg to 25 μg Hg per dose 

(with some vaccines containing > 25 μg Hg per dose) [29]. 

Worldwide, particularly in developing countries, TM is still present at preservative levels in many 

of the childhood vaccines such as HepB, Hib, DTP, DTwP-HepB-Hib vaccine, and various influenza 

vaccines [33–35]. Recently, the United Nations Environment Programme debated banning Hg from 

vaccines as part of its legal globally-binding instrument on Hg. The issues of a double standard in 

vaccine safety for developing countries and of access to Hg-free pharmaceuticals as a human right 

were highlighted by non-governmental organizations opposing the use of TM in vaccines. Many 

infants, particularly those in the developing world, immunized according to the recommended 

childhood vaccine schedule, receive about 200 μg of Hg from TM-containing vaccines during the first 

6 months of life. So the cumulative dose from TM is greater in developing countries than in developed 

countries such as the United Kingdom, Russia, Norway, Denmark, and Sweden which have 

significantly restricted the use of TM. It is important to note that in 1999, the American Academy of 

Pediatrics and the Public Health Service called for the complete removal of TM from all vaccines [36].  
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2.2. TM as a Toxin 

TM is not found in Nature. TM is a “designer” Hg compound in the sense that it was created and 

produced by humans. It was developed in 1927, to be a highly water-soluble form of Hg (metallic Hg 

and most ethyl-Hg (Et-Hg) compounds are not very soluble in water or water-based (aqueous) 

solutions) and to serve as an antimicrobial [37]. When TM is injected into a human as part of a vaccine 

matrix, because it is water soluble, some of the body’s most significant natural Hg-defense 

mechanisms are bypassed. Though TM is rapidly metabolized into various Et-Hg species (including 

mainly Et-Hg chloride and some Et-Hg hydroxide) in aqueous solutions and bodily fluids, its 

degradation does not detoxify the Hg because the end-point metabolites are tissue–retained Hg2+ 

species that are still toxic to the tissues that retain them. This is the case because all forms of Hg: 

elemental, inorganic and organic, are toxic to human physiology [38]. Of the toxic non-radioactive 

metals, Hg is the most toxic, even more toxic than lead to human fetal and neuronal cells [39,40]. 

In the human body, TM is broken down into Hg2+ species that tightly bind with the sulfur (S) 

residues in cellular components such as enzymes, organelles, cytoskeleton, and membranes that are 

critical to normal cell function [41]. Many times, the sulfhydryl (-SH) group of the amino acid  

L-cysteine (Cys) is the active site or is an important functional site of the protein molecule. Thus, when 

the Hg2+ species bind with enzymes, proteins, ion channels, membranes, etc., they alter normal cellular 

function and, in many instances, render the enzymes, proteins, ion channels, membranes, etc., 

essentially nonfunctional. In addition, the Hg2+ species present within tissues tend to bioaccummulate, 

especially in the brain (it is energetically very difficult for Hg2+ species to cross the blood-brain-barrier 

to back into the body), and inhibit the intracellular production and recycling of the oxidized GSH to 

reduced GSH [42]. 

Because the breakdown of TM in the body produces mainly Et-Hg chloride, which is fat soluble, it 

and other similar alkyl Hg compounds can pass through the brain membrane [43,44]. Once this Et-Hg 

compound enters the brain, it is metabolized, finally becoming tissue-retained inorganic Hg (Hg2+) 

species. Thus, to a large degree, TM is degraded into long-retained Hg2+ species [45]. 

For example, after a TM-solution was injected into rats in amounts that mimic human vaccine 

exposure, Rodrigues et al. [46], found that five days after exposure, the total Hg in the brain was 

present as a mixture of Hg2+ species (about 63%), Et-Hg species (13.5%) and, unexpectedly, Me-Hg 

species (23.7%), while only a low level of Hg2+ species were found in the rat’s blood. Studies indicate 

that, once de-alkylated, the resulting tissue-retained Hg2+ species can remain in the brain from several 

years to decades following exposure [47]. Its toxic effects also last for the duration. 

A recent study postulates that the membrane potential of cells and mitochondria can cause the 

intracellular levels and the intra-mitochondrial levels of the Et-Hg species to be between 5.6 and 1,000 

times the plasma levels, respectively [43]. In addition, research on endothelial cell membranes shows 

that TM, as well as Hg2+ and Me-Hg compounds, induce breakdown of membrane integrity, leading to 

leaky membranes. Associated with this breakdown is a major loss of cellular GSH levels [48]. Studies 

show that the intestinal epithelial membrane is similarly affected by these toxins [49]. Leakage from 

such complex cell membranes indicates that many of the toxic effects of TM, Me-Hg, and Hg2+ may be 

secondary to the induction of leaky membranes. For example, antibodies to foods may be due to food 
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peptides leaking from the intestines into the blood where they are perceived as foreign bodies. Such an 

association would explain the high rates of food allergies among children diagnosed with an ASD. 

2.3. TM Decreases GSH and Thiol Levels in General 

Thiols are compounds which contain the thiol group (-SH) attached to a carbon atom. Examples of 

common biochemical thiols are Cys, N-acetylcysteine (NAC), and GSH. Metallothioneins (MTs) are 

protein thiols [50]. TM acts as a -SH inhibitor [51].  

Many studies show that TM decreases GSH availability in human [52] and animal cells [48,53]. 

James et al. [52], for example, showed that TM caused the depletion of intracellular GSH in human 

neuroblastoma and glioblastoma cell lines, and Agrawal et al. [54] found that TM reduces GSH in 

human dentritic cells. In animals, for instance, Abdel-Rahman et al. [55] found that TM reduces brain 

levels of GSH in adult mice and that it persisted for many weeks following exposure. 

Me-Hg has also been found to reduce GSH levels [56] and inhibit GSH production [42].  

As reported by Stringari et al. [56] and other studies [57,58], the GSH antioxidant system is a 

significant molecular target of Hg, and during the early postnatal period, Hg exposure results in 

decreased GSH levels and decreased activities of GSH-related enzymes [56]. Moreover, in a follow-up 

study, Stringari et al. [42] found that Hg exposure effectively inhibited the developmental profile of 

the cerebral GSH antioxidant system during the early postnatal period. The authors stated that the 

inhibition of the maturation of the GSH antioxidant system might contribute to the oxidative damage 

seen after prenatal Hg exposure because, even though the cerebral Hg concentration in mice decreased 

later in the postnatal period, the GSH levels, GSH peroxidase (GPx) and glutathione reductase (GR) 

activities remained decreased in the mice prenatally exposed to Hg. These authors’ findings 

corroborate previous reports that indicate prenatal exposure to Hg adversely affects the GSH 

antioxidant systems by inducing biochemical alterations which persist even after the Hg tissue levels 

decrease to the same levels as those found in the controls. 

In addition, TM quickly reacts with other thiols forming Et-Hg adducts, reducing the availability of 

thiols in the cell [59]. Studies have shown that TM and other forms of Hg decrease the levels of total 

cellular thiols in general [60,61]. For example, Hagele et al. [61] described that mercuric chloride 

(HgCl) (inorganic form), Me-Hg chloride (an environmental-related form), and TM (the 

pharmaceutical form) significantly induced a decrease in the levels of total cellular thiols. Critically 

important is that many studies have shown that the degree of cellular damage from TM is directly 

related to the availability of thiols [62]. 

Although it is commonly understood that the effects of TM are dose dependent, thiols play a critical 

role in mitigating the level of toxicity from TM [63]. Thus, TM adversely impacts the very systems 

needed to lessen its toxic effects [59]. Because the adverse impact of TM is then also a function of the 

level and availability of thiols in the cells, thiol availability becomes a second variable to the toxicity 

equation in addition to dose: 

Exposure (Dose) + Susceptibility (Thiol Content/Availability) = Outcomes (Level of Insult) 

The following section reviews the research showing that the degree of cellular damage from TM is 

related to the availability of thiols. 
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2.4. TM Effects and the Importance of Thiols 

Studies using tissue culture show that the availability of thiols, particularly GSH, can influence the 

effects of TM and other Hg compounds [59]. Thiol-modulating mechanisms affecting the cytotoxicity 

of TM have been shown [59]. Wu et al. [59], for example, who examined the interaction of TM with 

topoisomerase II alpha and protein and non-protein thiols and with DNA, showed that depletion of 

intracellular GSH with buthionine sulfoximine treatment greatly increased the toxic effects of TM  

in K/VP.5 cells. Makani et al. [64] found that TM induces apoptosis in T cells via a mitochondrial 

pathway which caused oxidative stress and the depletion of GSH in Jurkat T cells (human T cell 

lymphoblast-like cell line); however, exogenous GSH apparently intercepted the TM and protected  

T-cells from TM-induced apoptosis. These findings, substantiated by these and many other studies, 

show that Hg toxicity is dependent on the cellular content of GSH [65]. This includes both the 

cytotoxic and the immunotoxic effects of Hg [66]. 

Pretreatment with other thiols, in addition to GSH, can also reduce the toxic effects of TM [67]. 

Migdal et al. [67], for example, examined the effects of TM on human monocyte-derived dendritic 

cells and found that TM and Hg derivatives induced dendritic cells’ activation, as measured by CD86 

and HLA-DR overexpression associated with the secretion of tumor necrosis factor alpha and 

interleukin 8. Importantly, they found that pre-treatment with NAC (a thiol and a reactive oxygen 

species scavenger) strongly decreased the chemically induced overexpression of CD86. Similarly, 

Mian et al. [68], who found that the prolonged oxidative stress caused by TM induced a remarkable 

cleavage of focal adhesion kinase [which is accompanied by apoptosis (cell death)], also found that 

these effects were almost completely blocked by the pretreatment with NAC. Anundi et al. [53] 

described a molecular mechanism by which TM exposure rapidly induced oxidative stress and 

subsequent cellular lysis following GSH depletion in isolated hepatocytes. Importantly, they found that 

the addition of Cys could reverse the cellular toxicity of TM. 

Nabemoto et al. [60] examined the effects of TM on stimulated arachidonic acid (AA) release in rat 

pheochromocytoma PC12 cells. They found that TM stimulated AA release in an irreversible manner 

and that monothiol compounds (such as L-Cys and GSH) and dithiol compounds (such as 

dithiothreitol) decreased the TM effect. 

One of the major toxic effects of TM is its ability to cause an increase in intracellular Ca2+ via Ca2+ 

influx from the extracellular space [69]. However, TM-induced Ca2+ influx (a secondary event 

following ROS induction) can be suppressed by pretreatment with NAC, but not by thiol-independent 

antioxidants [70]. In addition, treatment with Cys has been found to significantly decrease the 

reduction of the GSH content by TM and the increase in the intracellular Ca2+ concentration [71]. 

James et al. [52] examined cultured neuroblastoma and glioblastoma cells and found that  

TM-induced cytotoxicity was associated with depletion of intracellular GSH in both cell lines. 

Pretreatment with 100 μM GSH ethyl ester or NAC resulted in a significant increase in intracellular 

GSH in both cell types and prevented TM cytotoxicity. The authors went on to suggest that GSH or 

NAC could be considered as a possible adjunct therapy to individuals still receiving  

TM-containing vaccinations to prevent cytotoxicity from TM. 

TM is a thiol oxidizer, and as such, thiol reducing agents such as dithiotreitol (a protective agent to 

prevent the oxidation of thiol groups and for reducing disulphides to dithiols) have been shown to 
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assist in cellular protection against TM. Interestingly, using thiol-reducing compounds to reduce the 

effects of TM on GSH has been shown in several studies. For example, Montero et al. [72] found that 

TM caused histamine-induced Ca2+ release in intact HeLa cells and that this effect was reversible in 

the presence of dithiotreitol. Using Fura-2-loaded HeLa cells (from human cell lines), Bootman and 

colleagues, [73] showed that TM-evoked intracellular Ca2+ spikes were worsened by the depletion of 

GSH (by preincubation with D,L-buthionine (S,R)-sulfoximine) and reversed by dithiothreitol. 

2.5. Evidence of Abnormal Sulfation Chemistry in Autism 

Evidence for abnormal sulfation chemistry in autism began to be reported in the early 1990s, when 

Waring and O’Reilly [74] found low plasma levels of inorganic sulfate and sulfur oxidation 

deficiencies in children diagnosed with an ASD who also had food/chemical intolerances. Waring and 

O’Reilly found that the ratio between plasma Cys (a precursor of sulfate and taurine) and sulfate were 

much higher in children with autism compared to controls. In addition, this study found deficiencies in 

the activity of the phenol-sulfotransferase-P enzyme (PST). This enzyme requires sulfate provided by 

3’-phosphoadenosine-5’-phosphosulfate, (PAPS) and catalyzes the sulfate conjugation of phenolic 

compounds. The authors stated that the PST enzyme itself does not appear to be lacking or genetically 

weakened, but that it is lacking a sufficient supply of sulfate to attach to the phenolic molecules. 

According to Waring and O’Reilly [74], these data may represent a fault in the production of sulfate or 

a problem in its being utilized at rates that exceed the speed with which cells can process Cys to sulfate 

(Scheme 1). Corroborating these findings, Alberti et al. [75] also found that children diagnosed with an 

ASD had low sulfation capacity. 

Scheme 1. Trans-sulfuration Pathway. 

 

To determine if the low plasma levels of inorganic sulfate were indicative of increased urinary 

sulfate loss, Waring and Klovrza [76] completed a follow-up study examining urinary levels. This 

follow-up study revealed that children diagnosed with an ASD excreted higher levels of urinary sulfite, 

sulfate, and thiosulfate but reduced levels of thiocyanate. The abnormally high levels of the first three 

markers suggest a dysfunction of the specific sulfate transporters, NaSi and SAT-1. These transporters 

move sulfate across the apical and basolateral membranes (respectively) of the renal tubule cells, and 

SAT-1 also functions in other organs such as the brain. In addition, there are sulfate transporters 
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expressed in the brain, suggesting they may play a role in the transport of sulfate into the cells of the 

central nervous system (CNS) [77]. 

The reabsorption of sulfate and these other sulfur-containing molecules in the kidneys is key to 

maintaining body supplies of sulfur and sulfate, and this may be regulated from the gut [78]. Research 

by Waring and Klovrza [76] found that abnormal sulfate chemistry in children diagnosed with an ASD 

involved a specific population of children whose ASD symptoms manifested after 15 months of age 

(most were at approximately 2 years of age), with food allergies and gastrointestinal (GI) symptoms 

(e.g., frequent diarrhea, bloating, etc.). These researchers showed that these children, diagnosed with 

an ASD, had about 50 times the sulfite levels of the controls. 

Sulfite is very neurotoxic and the inability of children diagnosed with an ASD to convert it to 

sulfate may be due to lack of molybdopterin caused by the displacement of molybdenum (Mo) from 

this cofactor by Hg. The plausibility of this occurring is evident in the structure of molybdopterin, the 

organometalic complex cofactor for sulfite oxidase which converts sulfite (SO3−) to sulfate (SO4
2‒). 

Molybdenum is held in molybdopterin by two bonds to sulfur in the pterin and could easily be 

displaced by Hg2+, which has the highest affinity for sulfur binding. Some evidence suggests lower Mo 

levels in children diagnosed with an ASD [79]. In addition, Waring and Klovrza [76] reported 

improvements in children with autism who were given Mo supplementation. (Infants who lack 

molybdopterin can die of seizures early in life, which is thought to be caused by sulfite toxicity that 

has negative effects on white matter production.) 

2.6. Autism, the Transsulfuration Pathway, and the Availability of Thiols 

Following the work of Waring and Klovrza [76] and Waring and O’Reilly [74], many studies have 

continued to find abnormal sulfate levels and abnormal levels of the transsulfuration metabolites, in 

general, among children with ASD [21,22,80–85]. These metabolites of the transsulfuration pathway 

include homocysteine, cystathionine, GSH, taurine, sulfate, and Cys. In general, these transsulfuration 

pathway metabolites are found to be lower in children with autism than in controls. According to a 

review of this issue as it occurs in autism by Main et al. [86], the most consistent findings in the 

transsulfuration pathway metabolites are lower levels of plasma Cys and GSH (total and reduced).  

In a study by Geier et al. [84], the authors reported that not only did children diagnosed with an 

ASD have decreased plasma reduced GSH, plasma Cys, plasma taurine, plasma sulfate, and plasma 

free sulfate, but also there was also a significant inverse correlation between blood GSH levels and 

ASD severity using Childhood Autism Rating Scale (CARS) scores (the lower the GSH levels, the 

worse the autism symptoms). Similarly, Adams et al. [85] found significantly lower plasma GSH and 

plasma sulfate levels (free and total) in children with autism, and a significant inverse correlation 

between plasma free-sulfate levels and autism severity, meaning the lower the free-sulfate level, the 

greater the symptom severity. The preceding studies examined plasma or serum levels and consistently 

found abnormal levels of the trans-sulfuration metabolites in children diagnosed with an ASD as 

compared to normal controls. The following section discusses similar findings in the brains of children 

with an ASD. 
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2.7. Availability of GSH in the Brain of Those with Autism 

Importantly, recent evidence from two studies shows that there is insufficient availability of GSH in 

the brains of children diagnosed with an ASD. For example, Chauhan et al. [87] compared DNA 

oxidation and GSH redox status in postmortem brain samples from the cerebellum and frontal, 

temporal, parietal and occipital cortex of subjects diagnosed with an ASD in comparison to  

age-matched normal subjects. The authors reported that levels of reduced GSH were significantly 

decreased and that the levels of oxidized GSH were significantly increased in the cerebellum and 

temporal cortex in the brain samples from the group diagnosed with an ASD, as compared to the 

corresponding levels in the brain samples of the controls. In other words, the brain GSH levels in those 

diagnosed with an ASD also appear to be inadequate. 

Similarly, Rose et al. [88] examined frozen samples from the cerebellum and temporal cortex 

[Brodmann area 22 (BA22)] from individuals who had been diagnosed with an ASD and from 

unaffected controls. The authors found that GSH was significantly decreased in both the cerebellum 

and BA22 of individuals diagnosed with an ASD. In addition, 8-oxodeoxyguanosine (8-oxo-dG), a 

biomarker of oxidative stress and neurodegeneration, was significantly increased in the cerebellum and 

BA22 of those diagnosed with an ASD. 

2.8. GSH: Complex Synthesis Process and the Potential for Excessive Demand 

It is important to note that the production of GSH in the neuron requires a complex process which 

begins in the liver. GSH is first produced in the liver and then once it is released into the plasma it is 

converted to Cys and then cystine. Cystine can cross the blood-brain barrier and is taken up by the 

astrocyte cell [52]. The astrocyte converts the cystine to Cys and then to GSH which, once released 

into the extracellular space is converted to Cys [52]. The Cys is taken up by the neuron and converted 

to GSH. The neuron is dependent on this glial Cys for GSH synthesis [89]. 

GSH has so many roles, that it has the potential to be depleted due to demand. Key among these 

roles and functions is detoxification of xenobiotics (such as toxic metals). It is also an exogenous 

antioxidant that neutralizes free radicals and reactive oxygen species and is responsible for the 

maintenance of intracellular redox balance [86]. GSH is critical for the regulation, response, and 

maintenance of the immune system [90], and it modulates the effect of inflammatory cytokines [91]. 

GSH is also necessary for maintaining gastrointestinal integrity and for the regulation of cell 

proliferation [92]. GSH is also needed for the regeneration of other antioxidants such as vitamins C 

and E [92–94]. Subsequently, the lack of availability of GSH due to inadequate production or 

excessive demand could have an effect on many physiological systems. 

As GSH production begins in the liver, it may be important to note that Et-Hg accumulates in the 

liver. For example, a study in rats and monkeys using injection/infusion of radiolabelled (203Hg) Et-Hg 

chloride solutions at solution levels below 1 ppm of Hg showed significant bioaccumulation in the test 

animals’ organs, especially the kidneys, brain, heart, and liver [95].  
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2.9. Direct Evidence of Decreased GSH Reserve Capacity and Increased Susceptibility in Autism 

The preceding studies consistently reveal that the transsulfuration metabolites are decreased in 

individuals diagnosed with an ASD as compared to controls, both in blood and in the brain. The low 

GSH and sulfate levels found in children with ASD [21–23,76,80–85] predispose these children to a 

greater susceptibility of a brain insult because many of these transsulfuration metabolites are critically 

important for detoxification [20,94,96,97] and redox [98]. Although the above mentioned studies are 

consistent and numerous, this evidence showing an increased vulnerability to TM in children 

diagnosed with an ASD is still indirect. 

However, a recent study found direct cellular evidence of susceptibility to TM toxicity in 

individuals diagnosed with an ASD. James et al. [23] examined lymphoblastoid cells (LCLs) derived 

from children diagnosed with an ASD and from unaffected controls, to assess relative concentrations 

of reduced GSH and oxidized GSH in cell extracts and isolated mitochondria as a measure of 

intracellular redox capacity [23]. The authors reported that the reduced GSH to oxidized GSH redox 

ratio was decreased and the percentage of oxidized GSH increased, in both cytosol and mitochondria 

in the LCLs from those diagnosed with autism, and that TM resulted in a greater decrease in the 

reduced GSH to oxidized GSH ratio and an increase in free radical generation, among cells from those 

diagnosed with an ASD as compared to the cells from the controls. In addition, acute exposure to 

physiological levels of nitric oxide (NO) decreased mitochondrial membrane potential to a greater 

extent in the LCLs from those diagnosed with an ASD, even though the reduced GSH to oxidized GSH 

ratios and ATP concentrations were similarly decreased in both cell lines. The authors concluded that 

the results suggest that the LCLs from those diagnosed with an ASD have a reduced GSH reserve 

capacity in both cytosol and mitochondria which may compromise antioxidant defense and 

detoxification capacity under pro-oxidant conditions. A limitation of the study is that LCLs comprise 

only B lymphocytes which are grown in supra-physiological concentrations of nutrients. 

However, in addition to this work, the recent Sharpe et al. [99] study has particular relevance for 

this topic. In this study, researchers examined the action of low levels, ≤1,000 nM, of TM on 

immortalized B-cells taken from: ASD subjects, their fraternal twins, a sibling, and an age/sex 

matched control. They studied the effects of TM on cell proliferation and mitochondrial function from 

the B-lymphocytes. Eleven families were examined and compared to matched controls. They found 

that a subpopulation of eight individuals (four ASD, two twins, and two siblings) from four of the 

families showed TM hypersensitivity, whereas none of the control individuals displayed this response. 

Importantly, the amount of TM needed to inhibit cell proliferation in these individuals was only 40% 

of that required in controls. Cells hypersensitive to TM also had higher levels of oxidative stress 

markers, protein carbonyls, and oxidant generation. They also showed that in these hypersensitive 

cells, mitochondria are the target organelle conferring TM sensitivity. 

2.10. TM as a Source of Hg Exposure in Infants and Children 

There are many sources of Hg, and it is hard to apportion the contribution of TM as compared to 

other sources of Hg in individuals diagnosed with an ASD, particularly when considering Hg in the 

brain. However, there is research that shows vaccinated infants are exposed to a significant amount of 
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TM. It is estimated that approximately 50% of the Hg exposure such infants receive comes from the 

periodic bolus doses of TM in certain vaccines [100]. Bigham and Copes [100] estimated a cumulative 

exposure of about 164 μg of dietary Hg (from breast milk) in the first 6 months of life and a cumulative 

dose of Et-Hg (from TM-preserved vaccines) exceeding 187.5 μg in the first 6 months of life. 

These findings are in accordance with findings by Dórea et al. [101,102]. Dórea et al. [101] 

examined Et- and Me-Hg in hair samples of breastfed infants who had received the recommended 

schedule of TM-containing vaccines. They found a statistically significant inverse association between 

hair-Et-Hg concentrations and the time elapsed since the administration of the last TM-containing 

vaccine. Then, in 2012, they found that neurological development at six months was negatively 

associated with exposure to additional TM [102]. However, there were no developmental differences 

noted at 36 months. 

Importantly, they also found that levels for Et-Hg species in the hair were comparable to the levels 

of Me-Hg species in hair on an orders-of-magnitude basis, helping to confirm that Et-Hg species from 

TM-containing vaccines are a significant source of fetal/infant Hg exposure. This finding is in 

agreement with what was predicted by Redwood et al., [103] who examined the hair Hg toxicokinetics 

of TM-containing vaccines given to infants. 

These findings are also in agreement with what has been noted in individuals diagnosed with an 

ASD. For example, investigators, El-baz et al. [104], who examined hair Hg levels in children 

diagnosed with an ASD whose ages ranged from 2 to 13 years (mean age 6.75, SD ± 3.26 years) and 

controls whose ages ranged from 2 to 11 years (mean age 5.53, SD ± 2.75 years), observed that Hg 

exposure from vaccines containing TM significantly contributed to hair Hg levels, whereas only mild 

non-significant increases of mean hair Hg levels were observed in subjects diagnosed with an ASD 

whose mothers had increasing numbers of dental amalgams during pregnancy or had increasing fish 

consumption during pregnancy [77]. In addition, the hair Hg levels of patients diagnosed with an ASD 

were higher in those patients with the lowest mentality and those with the most severe degree of 

autism according to the Childhood Autism Rating Scale. However, as this study reported, and 

Majewska et al. [105] have explained, the connection between absolute level of Hg in hair samples and 

the effects observed is a complicated issue because of the age-dependent differences in excretion of 

injected Hg from vaccines between those who are neurotypical and those diagnosed with an ASD. 

It is important to note that the combined Hg exposure from vaccines and breast milk results in some 

infants receiving, as a daily average during the first year of life, more than 4.5 times the Environmental 

Protection Agency (EPA) daily Hg limit of 0.1 µg Hg/kg body weight/day. The Bigham and  

Copes’ [100] estimated dose of Hg from vaccines and environmental sources in the first six months of 

life is in excess of the safety limits of not only the EPA, but the Food and Drug Administration (FDA), 

the Centers for Disease Control (CDC), and the World Health Organization (WHO). Disturbingly, 

even when infant Hg exposure is within the level considered to be safe by the EPA, there is still an 

associated decrement in cognitive function found in the children exposed to that level of Hg [106–108]. 

Thus, the level of Hg exposure considered by the EPA to be safe has been shown to be inadequate and 

insufficiently protective. 

The EPA limit is based on ingested Me-Hg and there are some significant differences between 

uptake from dietary ingestion [109] and bolus exposure by injection as well as differences in the 

neurotoxic effects of TM and other Et-Hg compounds when these are compared to a similar Me-Hg 
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compound. The neurotoxic differences between these two families of alkyl-Hg compounds will be 

discussed further in the following section. 

2.11. Neurotoxic Differences between Me- and Et-Hg 

In the current environment where the use of TM in vaccines is a controversial topic, TM proponents 

suggest that a clear distinction exists between the toxic effects of the two Hg species, Me- and Et-Hg. 

Burbacher et al. [110], for example, showed several differences in the way that Me- and Et-Hg are 

metabolized in monkeys and concluded that Me-Hg did not make a good comparator. They stated that 

Et-Hg does not appear to stay in the blood as long as Me-Hg. This finding is often interpreted to mean 

that Et-Hg is excreted while Me-Hg accumulates or, as stated by the WHO [111], “Ethyl mercury has a 

blood half-life (3 to 7 days) much shorter than methyl mercury (45–60 days), and therefore, ethyl 

mercury is mostly excreted from the body and does not accumulate in the central nervous system.” 

However, Burbacher et al. [110] also concluded from their research that, “the safety of thimerosal 

drawn from blood Hg clearance data in human infants receiving vaccines may not be valid, given the 

significantly slower half-life of Hg in the brain as observed in the infant macaques.” Importantly, 

Burbacher et al. [110] found that there was a much higher proportion of inorganic Hg in the brain of 

TM-treated monkeys than in the brains of Me-Hg-treated monkeys (up to 71% vs. not more than 10%). 

When the non-detected results for a number of the monkeys force-fed the Me-Hg chloride is 

considered, the average inorganic Hg concentration in the brains of the TM-exposed monkeys was 

approximately three times that average for the Me-Hg-treated monkeys. In addition, they estimated, 

from the limited-duration data this study generated, that the dealkylation of Et-Hg was much more 

extensive (rapid) than the demethylation of Me-Hg during that same period. This is important because 

the half-life of inorganic Hg in the brain is much longer than the half-life of organic Hg. 

The theory that Et-Hg does not accumulate because the blood levels decrease relatively quickly 

fails to take into account that the Et-Hg does not remain in the blood because it is being accumulated 

in the organs. For instance, in a study in rats and monkeys, using injection/infusion of radiolabelled 

(203Hg) Et-Hg chloride solutions at solution levels below 1 ppm of Hg, showed significant 

bioaccumulation in the test animals’ organs [95]. In the case of the monkey, the Hg level in the regions 

of the wet brain samples tested 8 days post-exposure was actually significantly higher (20% to 110% 

higher depending on the brain-region tested) than the dosing level. 

Mentioned earlier, Rodrigues et al. [46] compared the distribution of Hg species in rat tissues 

following administration of TM and Me-Hg and found that, indeed, Hg remains longer in the blood of 

rats treated with Me-Hg compared to that of TM-exposed rats. However, they also found significant 

levels of Et-Hg species in the kidney, liver, and brain as well as, unexpectedly, Me-Hg species in the 

heart, kidney, liver, and brain of the TM-exposed rats after five days post exposure, even though there 

was no Me-Hg contamination in the TM used in this study. 

A similar conclusion that Et-Hg did not accumulate was theorized based on the Pichichero et al. [112] 

study that reported Et-Hg was excreted in feces for several weeks following TM injection. However, a 

study in rats has shown that most of the Hg from the injection/infusion of solutions of Et-Hg chloride 

containing radiolabeled 203Hg does not rapidly clear the animal’s body. Only low excretion levels were 
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present in the feces and the urine 8 days post dosing: no more than 15% of the dose given had cleared 

the rats via their urine and feces [113]. 

Since, studies, including Burbacher et al. [110], have shown that the final metabolites from the 

administration of Me-Hg chloride and TM are tissue-retained “inorganic Hg”, it is difficult to make a 

clear distinction between the toxic effects of Hg species, Me- and Et-Hg. Studies that do not focus on 

the tissue-retained “inorganic Hg” [47], which is the persistent bioaccumulating toxin in the brain and 

other organs and tissues or on the measurement of the toxic effects (symptoms and outcomes) from the 

dosing over an extended period of time cannot be relied upon to elucidate the comparative toxicity of 

Me- and Et-Hg compounds. 

Studies that specifically compare neurotoxicity and brain changes resulting from Me- and Et-Hg 

exposure are somewhat mixed. Some studies show Me-Hg to be more neurotoxic than Et-Hg, and some 

studies show Et-Hg is more neurotoxic than Me-Hg [40,114]. The bulk of the research suggests that both 

forms of Hg are neurotoxic and negatively impact the health of the brain. Ueha-Ishibashi et al. [115], for 

example, examined the effects of TM on cerebellar neurons dissociated from 2-week-old rats, as 

compared to Me-Hg, and found that both agents (at 1 μM or higher levels) similarly decreased the 

cellular content of GSH in a concentration-dependent manner, suggesting an increase in oxidative 

stress. This was corroborated recently in a study by Zimmerman et al. [116] which evaluated GSH 

levels in C6 rat glioma cells after exposure to Me-Hg, Et-Hg, and their complexes, MeHg-S-Cys and 

EtHg-S-Cys and found that all the studied mercurials significantly reduced intracellular GSH levels at 

4 h after the 30 min after exposure. No differences in GSH levels were observed between cells treated 

with Me- and Et-Hg. As mentioned earlier, Hagele et al. [61] found that Me-Hg chloride and TM 

significantly induced a decrease in the levels of total cellular thiols. 

In regard to general brain health, both forms of Hg (Me- and Et-Hg) have been found to cause  

Hg-induced vasculo-toxicity and resulting reduced blood flow in the brain [117–119]. Both cerebral 

and cerebellar decreased blood flow can result from Hg exposure. 

Often, it is suggested that Me-Hg is more toxic than Et-Hg because Me-Hg has active transport into 

cells through the L-type neutral amino acid carrier transport (LAT) system [120]. However, a recent 

study that examined the transport of Me- and Et-Hg in C6 rat glioma cell line showed that uptake of 

both forms is mediated, at least in part, through the LAT system. Moreover, according to the study 

investigators, the study showed that Me- and Et-Hg enter C6 cells by mechanisms other that LAT 

system [116]. 

It is important to note, however, that TM is injected, bypassing natural defense mechanisms; 

whereas, Me-Hg is typically taken orally by consuming fish or breast milk and thus does not bypass 

the natural defense mechanisms of the body [121]. Fish also often contain nutrients that can counteract 

Me-Hg toxicity, such as selenium [122]. 

There is some contradiction between governmental organizations on the relative toxicity of Me- and 

Et-Hg. The United States Food and Drug Administration considered Et- and Me-Hg as equivalent in its 

risk evaluation. They cite several studies that show TM to be toxic [123]. However, the WHO states 

that Me-Hg is toxic, but that Et-Hg is not toxic. Furthermore, the WHO Global Advisory Committee on 

Vaccine Safety (GACSV) has concluded that there is currently no evidence of Hg toxicity in infants, 

children, adolescents or adults (including pregnant women) exposed to TM in vaccines [111,124]. 
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However, this conclusion is at odds with the numerous studies that have been published on TM since 

1931 which found harm from TM [125]. 

2.12. TM and Neurodevelopmental Periods 

Until approximately three years of age, the brain develops rapidly and is characterized by critical 

developmental periods. Evidence suggests that once a process of development is missed or altered,  

that developmental period cannot be fully recovered, leading to brain abnormalities that are brain 

region- and time-specific [126]. These sensitive periods of elevated activity and processes can create 

windows of vulnerability for the developing brain [127]. As such, the detrimental effects of environmental 

compounds upon the body and brain can be determined in part by developmental age [128]. Many 

studies in the animal model show that toxic exposure at different developmental periods can have 

different detrimental effects [56]. Stringari et al. [56], for example, investigated the critical phases 

where Me-Hg induced cerebellar toxicity during the suckling period in mice. Animals were treated 

with daily subcutaneous injections of a Me-Hg compound during four different periods (5 days each) 

during the early postnatal period: postnatal day (PND) 1–5, PND 6–10, PND 11–15, or PND 16–20.  

A control group was treated with normal saline. Researchers found that the postnatal exposure to  

Me-Hg during the second half of the suckling period caused the most damage. 

In addition, infant and fetal tissue appears to be more vulnerable to some toxic effects of Hg than 

older children and adults [129]. This may be due, in part, to the availability, or lack thereof, of GSH.  

In the neonatal rat, for example, the main route of elimination of Me-Hg is by secreting the toxin into 

bile. This ability to secrete Hg into bile develops between 2 to 4 weeks of age and correlates with the 

increasing ability of the developing liver to secrete GSH into bile. Prior to 2 to 4 weeks of age, neonate 

rats are more vulnerable to the Hg toxin [130]. Based on radio-labeled (203Hg) studies of alkyl and aryl 

Hg compounds in rats, the principal route of early elimination is fecal and renal, but mostly fecal [113]. 

Estimated clearance values in the neonate rats are slower than in the adult rats, reflecting the known 

immaturity of renal function in neonates [131]. 

Specific to TM exposure, embryonic exposure to TM has been shown to produce lasting impairment 

of monoaminergic system in the rat brain. Following TM administration on embryonic day 9, serotonin 

and dopamine was found to be significantly increased on postnatal day 50 in the hippocampus [132]. 

Because the adverse impact of environmental compounds in the body and on the brain is a function 

of developmental times of exposure, this adds a third critical variable to the toxicity equation in 

addition to dose and thiol availability: 

Exposure (Dose) + Susceptibility (Thiol Content/Availability) + Neurodevelopmental Stage (Timing) 

= Outcomes (Level of Insult) 

2.13. Hg and the Brain Pathology in Autism 

Many researchers have reported that the results of their research show a relationship between Hg 

and ASD [133–150]. As stated by Geier et al. [147], an ASD may be triggered in a child as a result of 

a combination of genetic/biochemical susceptibilities in the form of a reduced ability to excrete Hg 

and/or increased environmental exposure at key developmental times. Although other causes of ASD 
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have been postulated, none can explain the myriad of ASD-associated pathologies found in the body 

and in the brain as well as Hg. For example, an examination of the parallels between the effects Hg 

intoxication on the brain and the brain pathology found in individuals diagnosed with an ASD reveals 

consistent parallels between the two [146]. Significantly, one of the signature effects of Hg is that it 

selectively targets large, long-range axons with subsequent abortive axonal sprouting (short, thin 

axons) and dentritic overgrowth. This leads to a loss of long-range connections and excessive short 

range connections, and this is what is found in autism. Many studies that examine the brain in autism 

report neuroinflammation with concomitant microglial/astrocytic activation, brain immune response 

activation, and elevated glial fibrillary acidic protein, and importantly this neuroinflammation appears 

to be chronic, not just acute, as well as excessive. It involves increased pro-inflammatory cytokine 

levels in the brain and aberrant nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 

both of which are activated by the presence of Hg in the brain. Many studies show oxidative stress and 

lipid peroxidation, decreased reduced GSH levels and elevated oxidized GSH, and mitochondrial 

dysfunction in both the brain in autism and in Hg intoxication. Parallels also include disruption in 

calcium homeostasis and signaling; inhibition of glutamic acid decarboxylase (GAD) activity; 

disruption of GABAergic and glutamatergic homeostasis; inhibition of IGF-1 and methionine synthase 

activity; and impaired methylation. Vascular endothelial cell dysfunction and pathological changes of 

the blood vessels and subsequent decreased cerebral/cerebellar blood flow is included. Loss of granule 

and Purkinje neurons in the cerebellum is a consistent finding in both Hg intoxication and autism. For a 

complete review of the research that identifies these parallels between the effects Hg intoxication on the 

brain and the brain pathology found in individuals diagnosed with an ASD, please see Kern et al. [146]. 

Since that comprehensive review, another parallel has been found between the brain serotonin 

system in autism and in Hg intoxication as well. Two recent studies by Ida-Eto et al. [132,151] shows 

that prenatal TM exposure alters that the brain’s serotonin systems. Importantly, they found that TM 

administered to pregnant rats caused a dramatic increase in the number of serotonergic neurons in the 

brains in the TM group (1.9-fold increase, p < 0.01 compared to control). Similarly, there is also an 

increase in the number of serotonergic neurons in the brain in autism. Azmitia et al. [152] examined 

serotonin (5-HT) axons that were immunoreactive to a serotonin transporter (5-HTT) antibody in a 

number of postmortem brains from children and adults with autism and found that stained axons at all 

ages studied indicated that the number of serotonin axons was increased in both pathways and terminal 

regions in the cortex from autism donors. 

2.14. TM as a Risk Factor in Other Developmental Issues 

When it is suggested that TM may contribute to the dramatic rise in the rate of ASD diagnoses due 

to the relationship between the increase in ASD rates and the increase in Hg exposure from  

vaccine-derived TM beginning in the late 1980s, the following question is often posed: “Then why 

aren’t all children injected with TM-containing vaccines affected?” Such a question does not take into 

account the unique constellation of factors: 

Exposure (Dose) + Susceptibility (Thiol Content/Availability) + Neurodevelopmental Stage (Timing) 

= Outcomes (Level of Insult) 
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For each child and every exposure, there is a unique set of factors, the sum of which govern 

whether there will be adverse effects from the toxic exposure, and if so, how severe. The unique nature 

of individual exposure is made even more complex by subsequent exposures and the individual body’s 

ability to excrete some of that Hg prior to the next exposure, again bearing on thiol content and 

availability. An historic and intricate understanding of a toxic exposure and its many contributing and 

interacting factors, which culminate in determining outcome and adverse effects and the possible 

diagnosis of an ASD, is now emerging. 

In addition, given the widespread exposure and the indicated toxicity of TM, an additional answer is 

that more children are affected than society currently realizes or counts. There is evidence to suggest 

that exposure to TM is a risk factor for other developmental issues besides autism. For example, in a 

study by Mrozek-Budzyn et al. [153], neonatal TM exposure was examined in 196 infants born to 

mothers attending prenatal clinics in the first and second trimesters of pregnancy in Krakow. Adverse 

effect of neonatal TM exposure was observed for the psychomotor development index (PDI) only at 12 

and 24 months of age. No significant effect of neonatal TM exposure was found at 36 months of age; 

however, the overall deficit in the PDI attributable to neonatal TM exposure measured over the course 

of the three-year follow-up was significantly higher in TM group. 

In addition, Thompson et al. [154] showed a significant association in boys between TM exposure 

from vaccines administered between birth and seven months of age in motor tics with an odds ratio of 

2.19 (95% CI: 1.02 to 4.47) and phonic tics with an odds ratio of 2.44 (95% CI: 1.12–5.35). This link 

is supported by five other studies [136,155–158]. 

Another example of TM being associated with adverse effects that by and large are unrecognized 

comes from the 2009/2010 flu season. During this time, the maximum prenatal Et-Hg related exposure 

increased in the United States to nominally 50 μg during the 2009/2010 flu season via the 

recommended 2009/2010 seasonal-flu and H1N1 flu vaccines that contained a preservative level of 

TM (an increase of 25 μg). An estimated 43% of all pregnant women in the United States received the 

2009 H1N1 influenza vaccine [159]. The unadjusted fetal-loss report rates for the three consecutive 

influenza seasons beginning with the 2008/2009 season were, in terms of reports per million pregnant 

women vaccinated: 6.8 (for the 2008/2009 season); 77.8 (for the 2009/2010 season); and 12.6 (for the 

2010/2011 season) [31]. Thus, based on the data in Goldman’s paper [31], the influenza-vaccine 

related spontaneous abortion and stillbirth report rates in the 2009–2010 flu season (in the CDC’s 

Vaccine Adverse Events Reporting System [VAERS]) increased by more than 11-fold from the report 

rates in the previous flu season. In 2010/11, when the amount of Hg from TM returned to a maximum 

nominal amount of 25 μg, the fetal-loss reports rates returned to levels similar to what they were in the 

2008/2009 flu season. Goldman stated that a synergistic fetal toxicity likely resulted from the 

administration of both the TM-preserved pandemic (2009-A-H1N1) and TM-preserved seasonal 

influenza vaccines to pregnant women during the 2009/2010 flu season. 

Furthermore, an evaluation of 278,624 subjects (birth cohorts from 1990–1996) in the computerized 

medical records within the Vaccine Safety Datalink (VSD), revealed that there is an association 

between premature puberty and exposure to Hg from TM-containing vaccines [160]. Hg is a  

known endocrine disruptor [161] and scientists have expressed concern about the potential role of  

endocrine-disrupting chemicals in increasing trends in early puberty in girls [162]. A review of the 

literature on the effects of Hg on the endocrine system by Tan et al. [163] revealed that Hg 
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accumulates in the endocrine system, causes changes in hormone concentrations, and interacts with 

sex hormones. 

Even topical application of TM has been shown to have serious, even fatal, risks. Fagan et al. [164], 

for example, reported that when 0.1% TM (from merthiolate) was topically applied to 13 infants with 

omophaloceles, 10 of the 13 infants died. The Hg levels in their organs ranged from 65–2,700 times 

above the normal organ levels. 

3. Conclusions 

The interplay of TM with the abnormal sulfation chemistry and limited thiol availability and redox 

capacity observed in those diagnosed with an ASD is likely an integral factor in the etiology of autism. 

Limited thiol availability suggests vulnerability and the mechanisms for increased vulnerability to TM 

due to limited thiol availability have been delineated in this review. The associated behavioral and 

developmental outcomes found in ASD are plausible as a manifestation of Hg toxicity, since the brain 

is a target organ for TM’s toxic effects as well as a target organ for the bioaccumulation of the toxic, 

long-retained Hg species derived from injected Et-Hg compound exposures [95]. 

The evidence suggests that the abnormal sulfation chemistry, limited thiol availability, and 

decreased GSH reserve capacity could explain why the adverse effects of TM are greater in a 

subpopulation of children with this susceptibility and why the subsequent brain insult is more 

pronounced in them, as has been shown repeatedly in the animal model. Furthermore, it has recently 

been demonstrated that polymorphisms in glutathione-related genes modify Hg concentrations and 

antioxidant status in human subjects environmentally exposed to Hg [165]. 

With the rate of children diagnosed with an ASD in the US now exceeding 1 in 50 children [166] 

and the rate of children with neurodevelopmental/behavioral disorders in the US now exceeding 1 in 6 

children [167], and the preceding evidence showing that there is vulnerability to TM that would not be 

known without extensive testing, the preponderance of the evidence indicates that TM should be 

removed from all vaccines. 
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