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Abstract

Introduction Inflammation is believed to be a contribut-

ing factor to many chronic diseases. The influence of

vitamin D deficiency on inflammation is being explored but

studies have not demonstrated a causative effect.

Methods Lowserum25(OH)Dis also found in healthypersons

exposed to adequate sunlight. Despite increased vitamin D sup-

plementation inflammatory diseases are increasing. The current

method of determining vitamin D status may be at fault. The level

of 25(OH)D does not always reflect the level of 1,25(OH)2D.

Assessment of both metabolites often reveals elevated

1,25(OH)2D, indicating abnormal vitamin D endocrine function.

Findings This article reviews vitamin D’s influence on the

immune system, examines the myths regarding vitamin D

photosynthesis, discusses ways to accurately assess vitamin

D status, describes the risks of supplementation, explains the

effect of persistent infection on vitamin D metabolism and

presents a novel immunotherapy which provides evidence of

an infection connection to inflammation.

Conclusion Some authorities now believe that low 25(OH)D

is a consequence of chronic inflammation rather than the cause.

Research points to a bacterial etiology pathogenesis for an

inflammatory disease process which results in high 1,25(OH)2D

and low 25(OH)D. Immunotherapy, directed at eradicating

persistent intracellular pathogens, corrects dysregulated vitamin

D metabolism and resolves inflammatory symptoms.

Keywords Vitamin D � Infection � Inflammation �
Immunotherapy

Introduction

Inflammation is involved in many chronic diseases and

concern has been raised about the influence of vitamin D

deficiency on inflammatory processes. When studies found

an association between inflammatory diseases and low

serum 25-hydroxyvitamin D (25(OH)D), further research

found evidence of low vitamin D in a large segment of the

general population. This led some authorities to declare a

world-wide epidemic of vitamin D deficiency and to rec-

ommend vitamin D supplementation. Experts are debating

the definition of vitamin D deficiency and the appropriate

vitamin D doses, while further research is being done to

determine if vitamin D supplementation has the intended

effect.

According to some current definitions of vitamin D

deficiency, even healthy persons, exposed to adequate

sunlight, are unable to acquire enough vitamin D without

supplementation. Often reiterated causes of vitamin D

deficiency can be disputed in the light of more current

research. In the absence of definitive studies, authorities are

questioning the wisdom of supplementing the general

population with vitamin D. The definition of Vitamin D

deficiency needs re-evaluation in view of the fact that low

25(OH)D is found in both healthy and sick individuals.

Concerns about vitamin D deficiency merit a closer look at

the current method of determining vitamin D status

because the level of 25(OH)D does not always reflect the

level of 1,25-dihydroxyvitamin-D (1,25(OH)2D). Analysis

of this active metabolite may reveal elevated 1,25(OH)2D)

in the presence of low 25(OH)D and lead to a diagnosis of

abnormal vitamin D endocrine system function.

An infectious pathogenesis posits that intracellular

bacteria disrupt the vitamin D regulated immune system,

resulting in persistent infection and chronic inflammation.
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In the clinical setting, a novel immunotherapy is demon-

strating the ability to resolve vitamin D metabolism

dysfunction, restore immune function, and thus, eliminate

infection and reduce inflammation. This review ponders the

question, ‘‘Is low 25(OH)D a cause of, or a consequence of

inflammation?’’ The answer is found in the evidence that

adds persistent intracellular infection to the equation.

Vitamin D metabolism

The sequential metabolic processes that convert biologi-

cally inactive, parental vitamin D into active metabolites

begin when vitamin D3 is photosynthesized in the skin or

when vitamin D2 or D3 is ingested. Vitamin D is trans-

ported to the liver where it is hydroxylated by an enzyme

(CYP2R1, also known as cytochrome P450 2R1) to pro-

duce 25(OH)D [1]. 25(OH)D is then transported to the

kidneys where it is hydroxylated by another enzyme

(CYP27B1, formerly 1a-hydroxylase) to produce

1,25(OH)2D. 1,25(OH)2D (also known as calcitriol), the

active metabolite, is the most potent steroid hormone in the

human body [2]. Feedback mechanisms regulate produc-

tion of 1,25(OH)2D in the kidneys via serum levels of

parathyroid hormone (PTH), fibroblast-like growth factor-

23 (FGF23) calcium, and phosphate [3]. 1,25(OH)2D is

also produced in many other tissues (e.g., skin, macro-

phages, colon, pancreas, blood vessels, etc.) by enzymatic

actions [4]. The vitamin D binding protein (VDBP) trans-

ports 1,25(OH)2D to the vitamin D receptor (VDR) in the

cell nucleus [5]. The VDR is a member of the nuclear

receptor family of ligand-regulated transcription factors.

1,25(OH)2D binds to the VDR and mediates the tran-

scription of DNA, triggered by signaling proteins, like

nuclear factor kappa-B (NFk-B) [6] (Fig. 1).

The influence of 1,25(OH)2D on the immune system is

one of its most important roles. 1,25(OH)2D regulates the

immune system via the VDR which is present in most

immune cell types, particularly in antigen-presenting cells

(APCs) such as monocytes, macrophages and dendritic

cells [7]. 1,25(OH)2D activates the VDR to express anti-

microbial peptides (AMPs) such as cathelicidin and beta

defensins which attack pathogens [8, 9]. In general, the

innate immune system is enhanced and the adaptive

immune system is inhibited by 1,25(OH)2D [10, 11]. Thus,

an effective immune response is heavily dependent on the

vitamin D endocrine system which performs a balancing

act of inflammation versus anti-inflammation.

Vitamin D deficiency

Concerns about vitamin D deficiency arose when studies

showed patients with autoimmune diseases have lower

levels of serum 25(OH)D and study subjects given vitamin

D had lower rates of autoimmune diseases and fewer

Fig. 1 Synthesis and

metabolism of vitamin D.

Sequential metabolic processes

convert biologically inactive,

parental vitamin D into active

metabolites
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markers of inflammation [12, 13]. However, authorities

have not agreed on the significance of low 25(OH)D and

without a consistent normal range for serum 25(OH)D, the

definitions of vitamin D insufficiency and deficiency from

the Vitamin D Council, the Endocrine Society and the

Institute of Medicine vary significantly.

The Vitamin D Council definition [14]:

• Deficient: 0–40 ng/ml

• Sufficient: 40–80 ng/ml

• High normal: 80–100 ng/ml

The Endocrine Society definition [15]:

• Deficiency B 20 ng/ml

• Insufficiency = 20–29 ng/ml

The Institute of Medicine definition [16]:

• Risk/deficiency B12 ng/ml

• Risk/insufficiency = 12–20 ng/ml

• Sufficient = 20 ng/ml

In 2006, the Merck Manual listed 25–40 ng/ml as the

normal 25(OH)D range [17]. Recently, this range has

skyrocketed to 30–74 ng/ml [18]. Quest Diagnostics now

lists the upper limit of normal 25(OH)D as 100 ng/ml [19].

Laboratory reference ranges for serum 25(OH)D levels

have long been based upon average values from popula-

tions of healthy individuals but many people are now

supplementing with vitamin D. In the US, the leading

authority regarding medical research is the prestigious

Institute of Medicine (IOM). The 2010 IOM report on

vitamin D emphasized that the current measurements, or

cut-off points, of sufficiency and deficiency of 25(OH) D in

use by laboratories have not been set using rigorous sci-

entific studies. It suggests that since no central authority

has determined which cut-off points to use, reports of

deficiency and lab ranges may be skewed and numbers

overestimated [16]. Therefore, it would be prudent to use

the IOM vitamin D deficiency guideline in the clinical

setting, for clinical studies and when evaluating research

results.

Purported reasons for vitamin D deficiency

Is low 25(OH)D among the general population an accurate

assessment of vitamin D deficiency? Many reasons are

cited for the current ‘epidemic’ of vitamin D ‘deficiency’

but closer examination reveals these beliefs are based on

outdated or limited studies and can be challenged with

more recent research.

Melanin pigmentation is only one factor that determines

the amount of vitamin D3 which is photosynthesized [20,

21]. Bogh et al. [22] measured the baseline serum

25(OH)D and total cholesterol levels of 182 fair-skinned

and dark-skinned subjects; and studied the effect of UV

radiation on their serum 25(OH)D levels. They found the

amount of serum 25(OH)D produced was determined by

the amount of cholesterol in the skin, not on skin pig-

mentation. Matsuoka et al. [23] investigated the effect of

racial pigmentation on vitamin D3 formation, simulating

the process with a fixed dose of UVB radiation and con-

cluded that while racial pigmentation has a photo-

protective effect, it does not prevent the generation of

normal levels of active vitamin D metabolites. Persons with

dark skin also compensate for low 25(OH)D by rapidly

converting it to the active 1,25(OH)2D metabolite, thus

allowing them to maintain adequate vitamin D status [24].

Skin pigmentation does not appear to negatively affect

vitamin D status [25].

Clothing is a barrier to vitamin D photosynthesis but this

is an issue only for people who cover themselves from head

to toe [26]. It takes relatively little sunlight exposure to

acquire adequate stores of vitamin D and few people wear

enough clothes to prevent that from happening. Ten to

15 min of sunlight or daylight exposure to a small area of

skin (e.g., the forearm or face, etc.) twice a week, without

sunscreen, supplies all the vitamin D necessary for health

[27]. The belief that sunscreen lotion blocks vitamin D

production is based on a 1987 study done by Matsuoka

et al. [28] that was funded by the ultraviolet foundation,

which is supported by the tanning bed industry. Contra-

dictory information was provided by Diehl and Chiu [29]

which concluded that although sunscreens are effective,

many may not actually be blocking UV-B because they are

improperly or inadequately applied [30]. Thus, sunscreen

use may not actually diminish vitamin D synthesis in real

world use. However, prolonged unprotected sun exposure

should be avoided to reduce the risk of developing skin

cancer.

Although pollution can block some ultraviolet radiation,

even in urban areas of high pollution 50 % of UV rays

reach the ground [31]. A significant amount of UV radia-

tion exposure can be obtained in dense metropolitan areas;

tall buildings provide shade but shade gives up to 50 % of

UV rays. Indoor workers receive 10–20 % of outdoor

workers’ yearly UV exposure [31]; and for many, this may

be adequate, especially if sunlight exposure is higher when

they are not working. UV radiation is reflected or scattered

to varying extents by different surfaces. The scattering and

absorption of light by clouds may not significantly reduce

natural light exposure because over 90 % of UV rays may

penetrate clouds [31]. Environmental factors are rarely an

impediment to photosynthesis of adequate vitamin D.

As the skin ages, there is a decline in the cutaneous

levels of 7-dehydrocholesterol, resulting in a marked

reduction of the skin’s capacity to produce vitamin D3 [32].
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However, despite the up to fourfold reduction in vitamin

D3 production in a 70-year-old compared to a 20-year-old,

the skin has such a high capacity to make vitamin D3 that

elders exposed to sunlight will produce an adequate

amount of vitamin D3 to satisfy their vitamin D require-

ment [33, 34].

A 1988 study by Webb et al. [35] is often cited to

support the conviction that latitude dramatically influences

the amount of solar radiation available to synthesize vita-

min D3. However, other researchers who conducted more

recent studies refute this hypothesis. Kimlin et al. [36]

report, ‘‘It may no longer be correct to assume that vitamin

D levels in populations follow latitude gradients’’. And

Lubin [37] states, ‘‘Geophysical surveys have shown that

UV-B penetration over 24 h, during the summer months at

Canadian north latitudes when there are many hours of

sunlight, equals or exceeds UV-B penetration at the

equator.’’ Ross et al. [16] report that ample opportunities

exist to form vitamin D (and store it in the liver and fat for

later use) from exposure to sunlight during the spring,

summer, and fall months even in the far north latitudes.

Acceptance of these vitamin D myths regarding photo-

synthesis prevents consideration of the alternate

hypothesis—low serum 25(OH)D, despite adequate pho-

tosynthesis of vitamin D3, is a result of an inflammatory

process.

Low vitamin D is found in healthy subjects

Many studies of healthy subjects have found levels of

25(OH)D that, by some vitamin D definitions, are declared

deficient (hypovitaminosis-D) [38, 39]. Vitamin D levels

that are considered deficient have even been found in

persons who are exposed to abundant sunlight [40]. Bink-

ley et al. [41] showed a mean 25(OH)D level of 31.6 ng/ml

among healthy young adult Hawaiian surfers. It is clear

that low levels of 25(OH)D are found in both healthy

persons and those with autoimmune or chronic inflamma-

tory diseases. Opposing reasoning can be used to explain

this contradiction. One explanation reasons that healthy

persons with low 25(OH)D will become sick and sick

people will develop lower 25(OH)D levels (Fig. 2); how-

ever, studies do not support this hypothesis. The correct

explanation may be that, in the absence of disease, low

25(OH)D is normal.

Low vitamin D in the presence of diseases

Since low 25(OH)D is found in both healthy persons and

those with autoimmune or chronic inflammatory diseases,

assessing vitamin D status with the measurement of an

additional clinical marker may be helpful. It is asserted that

low levels of 25(OH)D accurately reflect vitamin D status;

however, measurement of 1,25(OH)2D often demonstrates

a positive correlation of elevated 1,25(OH)2D to inflam-

matory diseases (Fig. 2). This is illustrated by Blaney et al.

[42] in a study of 100 patients with autoimmune and

chronic disease which found that 85 % of subjects had

levels of 1,25(OH)2D higher than 46.2 pg/ml without

hypercalcemia. Although this serum level may be consid-

ered normal by some, lab ranges for 1,25(OH)2D may have

been skewed high by the presence of patients with unrec-

ognized persistent intracellular infection and thus,

dysregulated vitamin D metabolism. The Danish

1,25(OH)2D population data (from a large and reliable

study) found the mean value for 1,25(OH)2D in a normal

population was 29 pg/ml with a standard deviation of 9.5

[43]. More frequent measurement of both D-metabolites in

the clinical and research settings, may shed light on the true

meaning of low 25(OH)D.

Rickets is often cited as proof of the need for vitamin D

supplementation. However, a review of the metabolic

processes involved provides some prospective. Adequate

vitamin D is essential to prevent rickets, but adequate

calcium is equally important; if either calcium or vitamin D

is deficient, bone health suffers. Hypophosphatemia is the

common denominator of all rickets; low calcium intake

leads to hyperparathyroidism, which leads to high phos-

phorus excretion and, thus, phosphorus deficiency [44].

Rickets is rare in the developed world; however, children

in developing countries, who usually photosynthesize

enough vitamin D from sunlight, develop rickets if poverty

prevents them from eating enough calcium-rich food [45,

46]. Studies have found that rickets occurs in sunny

countries due to poor calcium intake and is cured with

increased calcium ingestion [47, 48].

Osteoporosis is another disease which is closely linked

with vitamin D. Adequate vitamin D is an important factor

in maintaining bone health to avoid osteoporosis but a

Fig. 2 Interpretation of vitamin D deficiency via calcitriol measure-

ment. Since low 25(OH)D is found in both healthy persons and those

with autoimmune or chronic inflammatory diseases, assessing vitamin

D status with measurement of 1,25(OH)2D may be helpful
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study by Reid et al. [49] published in The Lancet found

little evidence supporting the use of vitamin D supplements

by seniors hoping to improve bone density and ward off

potential fractures. 1,25(OH)2D maintains calcium

homeostasis between blood, cells and bones by stimulating

calcium absorption from the intestines, reabsorption in the

kidneys, and resorption in bones [50]. 1,25(OH)2D up-

regulates the VDR in the small intestine, which then

transcribes genes that shuttle calcium and phosphorus

through the intestinal epithelium. However, mucosal

response and calcium/phosphorus absorption are dependent

on a competent VDR and elevated 1,25(OH)2D reduces

VDR competence [51]. Thus, calcium and phosphorus

absorption may be inhibited if VDR function is impaired

by elevated 1,25(OH)2D. This is illustrated by Abreu et al.

[52] in a study of Crohn’s patients with elevated

1,25(OH)2D and low bone mineral density which con-

cluded that treatment of the underlying inflammation

would improve metabolic bone disease. In fact, there is

ample evidence that elevated 1,25(OH)2D leads to bone

loss. Brot et al. [53] found that elevated levels of

1,25(OH)2D were strongly associated with decreased bone

mineral density and content, and increased bone turnover.

When levels are above 42 pg/ml 1,25(OH)2D stimulates

bone osteoclasts. This leads to osteoporosis, dental frac-

tures and calcium deposition into the soft tissues [54].

Vanderschueren et al. [55] found that a combination of

high 1,25(OH)2D and low 25(OH)D is associated with the

poorest bone health.

Vitamin D supplementation

It is reasoned that if low 25(OH)D indicates a current or

potential disease state, then increasing 25(OH)D by sup-

plementing with vitamin D should provide some symptom

relief and/or protection. So far, there is scant evidence for

this hypothesis [56, 57]. According to Ross et al. [16] in the

2010 IOM report, ‘‘Outcomes related to autoimmune dis-

orders, cancer, cardiovascular disease and hypertension,

diabetes and metabolic syndrome, falls and physical

performance, immune functioning, infections, neuropsy-

chological functioning, and preeclampsia could not be

linked reliably with calcium or vitamin D intake and were

often conflicting.’’ Despite the recent increase in vitamin D

supplementation, chronic diseases have increased and are

expected to continue increasing [58, 59].

Consequently, more vitamin D experts are beginning to

reconsider vitamin D supplementation among the general

population [60]. Recommending higher vitamin D intake to

large populations carries the potential risk of overdosing

certain individuals [61]. It is difficult to ingest too much

vitamin D from food, and natural mechanisms regulate the

amount of vitamin D3 photosynthesized from sunlight [62].

However, elevated 25(OH)D and hypervitaminosis-D can

occur due to vitamin D supplementation [63]. A study by

Noordam et al. [65] cast doubt on the causal nature of

previously reported associations between low levels of

vitamin D and age-related diseases and mortality. A com-

prehensive review by Autier et al. [65] concluded that low

concentrations of 25(OH)D are most likely an effect of

health disorders and not a cause of illness. Commenting on

the findings in a press statement, Autier et al. [64] advised

against vitamin D supplementation and explained the

observed discrepancy between observational and random-

ized trials:

Decreases in vitamin D levels are a marker of dete-

riorating health. Ageing and inflammatory processes

involved in disease occurrence and clinical course

reduce vitamin D concentrations, which would

explain why vitamin D deficiency is reported in a

wide range of disorders. We postulate that inflam-

mation is the common factor between most non-

skeletal health disorders and low 25(OH)D concen-

trations. Inflammatory processes involved in disease

occurrence and clinical course would reduce

25(OH)D, which would explain why low vitamin D

status is reported in a wide range of disorders.

However, increases in 25(OH)D have no effect on

inflammatory processes or on disorders at the origin

of these processes.

A 2014 meta-analysis by Bolland et al. [66] on the

effects of vitamin D supplementation on skeletal, vascular,

or cancer outcomes concludes that vitamin D supplemen-

tation with or without calcium does not reduce skeletal or

non-skeletal outcomes in unselected community-dwelling

individuals by more than 15 %. The authors further state

that future trials with similar designs are unlikely to alter

these conclusions. Because of emerging concerns about

elevated 25(OH)D, the IOM has shifted the paradigm from

thinking about ‘more is better’ to a more risk-averse

approach [67]. It has also challenged the notion that harm

should be viewed in terms of vitamin D toxicity such as

hypercalcemia, hypercalciuria, or metastatic calcification

and has advanced the concept of ‘harm’ in terms of chronic

disease outcomes and mortality [16]. Because adverse

effects of vitamin D supplementation may take decades to

be realized, clinicians (mindful of the medical ethics pre-

cept ‘‘First, do no harm’’) should err on the side of caution;

follow the IOM guideline and wait for the results of long-

term vitamin D studies.

Bacterial pathogenesis of low vitamin D hypothesis

If evidence indicates that most people get adequate vitamin

D from sunlight exposure but healthy persons are found to
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be ‘deficient’ by recent standards, what is the explanation

for this phenomenon? Vitamin D proponents use a disease

deficiency model to explain low levels of 25(OH)D. Their

hypothesis states low 25(OH)D causes chronic diseases;

however, a pathogenesis has not been elucidated [68]. Low

serum 25(OH)D in the presence of disease can also be

explained with a dysregulated vitamin D metabolism

model [69]. This hypothesis proposes that low vitamin D is

the consequence of a chronic inflammatory process caused

by persistent infection. The bacterial pathogenesis theo-

rizes that intracellular (cell wall deficient) bacteria invade

nucleated cells, use strategies to avoid destruction and

cause abnormal vitamin D endocrine function, resulting in

low vitamin D. Excess 1,25(OH)2D is produced in an effort

to up-regulate the VDR to transcribe AMPs; and 25(OH)D

is rapidly metabolized in the process, resulting in a low

serum level. The resulting elevated 1,25(OH)2D causes

chronic, systemic inflammation and its accompanying

symptoms (Fig. 3).

The existence of bacteria which are capable of invading

human cells has been known for over a century and are

described by many authors [70, 71]. The lack of a cell wall

enables them to enter human cells and proliferate because

they fail to elicit an appropriate response when the immune

system is compromised. In particular, they enter the mac-

rophages—the very immune cells deployed to kill invading

pathogens. The inability of most research labs to culture

cell wall deficient (CWD) bacteria has been an obstacle to

their acceptance, and reliance on Koch’s postulates has

made it difficult to correlate CWD bacteria to specific

diseases [72]. But some researchers believe Koch’s pos-

tulates may have to be redefined in terms of molecular data

when dormant and non-culturable bacteria are implicated

as causative agents of mysterious diseases [73]. ÓConnor

et al. [74] (in their article entitled Emerging Infectious

Determinants of Chronic Diseases) report, ‘‘microbes can

now be irrefutably linked to pathology without meeting

Koch’s postulates’’ and ‘‘…powerful tools of molecular

biology have exposed new causal links by detecting diffi-

cult-to-culture and novel agents in chronic illness settings.’’

Domingue [75] commented, ‘‘This might translate into

an etiology for chronic inflammatory diseases, when the

stressed bacteria increase in numbers and overwhelm the

normal biological functions of the host.’’ Nunez [76] was

quoted in the University of Michigan Health System

newsletter, ‘‘In our study, the presence of bacterial

microbes inside the cell is what triggers the immune

response.’’ Rolhion and Darfeuille-Michaud [77] observed

that the presence of pathogenic invasive bacteria could be

the link between an innate immune response to invasive

bacteria and the development of inflammation. A number

of studies suggest disease associations with CWD bacteria

[78–83]. Verway et al. [79] report ‘‘…data suggest that at

least a subset of the genetic predisposition to Crohn’s

disease results from defects in the detection and/or pro-

cessing of intracellular pathogens by the innate immune

system.’’ O’Connor et al. [74] state, ‘‘The epidemiologic,

clinical, and pathologic features of many chronic inflam-

matory diseases are consistent with a microbial cause.

Infectious agents likely determine more cancers, immune-

Fig. 3 Proposed hypothesis for

chronic inflammation caused by

persistent intracellular infection.

Intracellular bacteria invade

nucleated cells and use

strategies to avoid destruction.

Excess 1,25(OH)2D is produced

in an effort to up-regulate the

vitamin D receptor to transcribe

AMPs; and 25(OH)D is rapidly

metabolized in the process,

resulting in a low serum level.

The resulting elevated

1,25(OH)2D causes chronic,

systemic inflammation and its

accompanying symptoms
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mediated syndromes, neurodevelopmental disorders, and

other chronic conditions than currently appreciated.’’

CWD bacteria are considered communicable but not

contagious; protective immunity depends on an effective

cell-mediated immune response [80]. It is now well

appreciated that pathologic processes caused by infectious

agents may only emerge clinically after an incubation of

decades [81]. Among the speculated causes of the increase

in chronic infections are overuse of beta-lactam antibiotics

[82, 83] and immunosuppression via excess 25(OH)D

production [84] or immunosuppressive medications [85].

Many microbiologists now believe at least some, if not all,

of the inflammation which drives the chronic disease pro-

cess is caused by the presence of these stealthy intracellular

pathogens [86]. A considerable body of experimental and

clinical evidence supports the concept that difficult-to-

culture and dormant bacteria are involved in latency of

infection and that these persistent bacteria may be patho-

genic [73, 87, 88]. McDougal [89] states, ‘‘Evidence now

confirms that non-communicable chronic diseases can stem

from infectious agents.’’

Effects of intracellular pathogens on the immune

system

Pathogens gain many advantages by parasitizing immune

cells and altering nuclear receptor activity. Tissue invasion

provides a privileged niche with access to host protein and

iron, sequestration from immune response, and a means for

persistence [90]. In the arms race of host–microbe co-

evolution, successful microbial pathogens have evolved

innovative strategies to evade host immune responses. For

example, ‘crosstalk manipulation’ undermines host defen-

ses and contributes to microbial adaptive fitness [91, 92].

Pathogenic microbes also induce stress responses which

protect the cell from lethal factors, express proteases that

degrade AMPs, use biofilms as a shield and modulate host

cell motility to facilitate establishment of an infection [93,

94]. Genetic foreign and host protein interactions alter gene

transcription and translation mechanisms, and many spe-

cies survive by horizontal gene transfer [95, 96].

It is theorized that bacteria have developed some of

these strategies in order to invade host cells and remain

undetected within cellular cytoplasm. Many bacterial

pathogens form antibiotic-tolerant persister cells which can

replicate within macrophages. In this form they can cause

subclinical infection and have been associated with chronic

diseases [95, 97, 98]. Intracellular bacteria can modulate

cytokine production [99]; and in monocytes and macro-

phages, cytokine activation markedly inhibits 1,25(OH)2D/

VDR gene transcription [100].

Macrophage microbicidal mechanisms are responsible

for the control and elimination of pathogens. 1,25(OH)2D

production and action in macrophages activates toll-like

receptors to increase expression of the AMP cathelicidin

which kills infectious invaders [101, 102]. When the

immune system is fighting a persistent microbe, inflam-

matory molecules are continuously released in an effort to

kill the pathogen [103]. Immune defenses stimulate Th17

cells and contribute to the development of chronic

inflammatory conditions [104, 105]. An ineffective

immunological response causes low-grade inflammation

and phagocyte-inflicted tissue damage plays an important

role in many chronic diseases [106]; autoimmune patients

acquire a distinct pathogenic microbiota and multi-mor-

bidity often results [107, 108]. Therefore, it is reasonable to

infer that bacteria have evolved strategies which allow

them to persist within host cells. The exact mechanisms are

unknown and warrant further study.

The compromised immune system, infection

and vitamin D

In an essay on the renin–angiotensin system (RAS) and

immune response, Smith [109] postulated that unresolved

cellular stress may be caused by infectious agents to avoid

adaptive immune responses. The host immune response has

developed many mechanisms to neutralize and remove

pathogenic bacteria. In turn, pathogenic bacteria have

developed mechanisms to alter and evade the host immune

response [110, 111]. Regulation of the VDR is a common

mechanism used in the host defense against pathogens but

certain microbes have been shown to slow innate immune

defenses by down-regulating the VDR:

• Mycobacterium tuberculosis down-regulates VDR

activity [112].

• Mycobacterium leprae inhibits VDR activity through

down-regulation of CYP27B1 in monocytes [113].

• Aspergillus fumigatus secretes a toxin capable of

down-regulating the VDR in macrophages [114].

• Epstein–Barr virus lowers VDR activity [115].

• HIV completely shuts down VDR activity [116].

• In VDR knockout mice, a circumstance that closely

mimics extreme VDR dysregulation, 1,25(OH)2D lev-

els increase by a factor of ten [117].

Studies also point to immune system depression and

elevated 1,25(OH)2D in chronic diseases [118]:

• Sarcoidosis patients are deficient in cathelicidin despite

healthy vitamin D3 levels [119].

• 1,25(OH)2D is high ([60 pg/ml) in 42 % of Crohn’s

patients and the source of the active vitamin D may be

the inflamed intestine [52].
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• 1,25(OH)2D is elevated in the synovial fluid of patients

with RA (rheumatoid arthritis) [120].

• Crohn’s disease decreases expression of cathelicidin

[121].

High levels of 1,25(OH)2D may result when down-

regulation of the VDR by bacterial ligands prevents the

receptor from expressing enzymes necessary to keep

1,25(OH)2D in a normal range [42]. Elevated 1,25(OH)2D

further reduces VDR competence, suppresses macrophage

function, and blocks the nuclear factor kappa-B pathway;

thus inhibiting immune system function [116, 122, 123].

Reducing the ability of the VDR to express elements of

innate immune function allows intracellular bacteria to

persist in the cytoplasm of nucleated cells and may account

for the increased susceptibility to non-bacterial co-infec-

tions that are commonly found in patients with chronic

illnesses [124, 125]. Theoretically, immune system sup-

pression allows parasitic microbes to persist and proliferate

in host phagocytes, successfully compete for nutritional

resources, and displace commensal organisms from their

niche [126]. Elevated 1,25(OH)2D appears to be evidence

of a disabled immune system’s attempt to activate the VDR

to combat infection.

Autoimmune disease

Numerous examples can be found in which pathogens

express antigens that cross-react with host antigens or

induce local inflammatory responses that can lead to

autoimmune responses through a very complex set of cir-

cumstances [127]. The prevailing theory regarding the

etiology of autoimmune disease states that an overactive

immune system produces auto-antibodies against self, but

infection as an environmental factor in autoimmunity has

long been recognized. An alternate hypothesis posits a

bacterial etiology in which a persistent intracellular infec-

tion causes a cytokine release that induces signals to T cells

and B cells, and the antibodies they produce (to the intra-

cellular invader) include some that attack human proteins,

as well as target the pathogens [128, 129]. Christen et al.

[130] explored this hypothesis, ‘‘In theory, a structural

similarity or identity between the host and an invading

pathogen might cause the immune system of the host to

react not only to the pathogen but also to self-compo-

nents.’’ Infections can act as environmental triggers

inducing or promoting autoimmune disease in genetically

predisposed individuals [131]; researchers have shown how

antinuclear antibodies (ANA) are created in response to

infectious agents [132, 133].

Vitamin D appears to have a positive effect on auto-

immune disease due to immune system suppression [122,

134, 135] and immune suppression is considered thera-

peutically beneficial for autoimmune diseases [136, 137].

However, vitamin D proponents have failed to recognize

that positive effects are due to the immunosuppressive

effect of elevated 25(OH)D or to understand that immu-

nosuppression is contraindicated because of the probable

presence of intracellular infection. When the immune

system is suppressed clinical disease markers and symp-

toms are reduced but immunosuppression does not address

an underlying cause of persistent bacteria, thus relapse is

common [138]. Verway et al. [79] wonder, ‘‘Is a specific

pathogen responsible for disease or rather is a dysregulated

immune response generated against a complex microbial

population? Why would immune-suppressive drugs be

efficacious if the primary defect is an immune deficiency?’’

Much of current research focuses on finding drugs to

suppress inflammation but, according to Collins [139],

95 % of these studies have failed It seems clear a better

direction is needed. Immunotherapy which restores VDR

competence corrects dysregulated vitamin D metabolism

and eliminates intracellular bacteria could be the answer

(as discussed in the section titled Restoring VDR

Competence).

Dysregulated vitamin D metabolism

In a healthy individual, the complex interplay between

innate and adaptive immunity cooperates to mount an

appropriate response to infection through regulation of the

vitamin D endocrine system [140]. The immune system

detects and responds to the presence of intracellular bac-

teria by producing more 1,25(OH)2D to activate the VDR

and express the crucial endogenous AMPs which enable

the innate immune system to target intracellular pathogens

[141]. Renal production of 1,25(OH)2D is tightly self-

regulated, with the end product down-regulating its own

further production. In contrast, extra-renal tissues (e.g.,

uterine decidua and placenta, colon, breast, prostate,

spleen, bone, keratinocytes, melanoma and synovial cells,

pulmonary monocytes and macrophages, etc.) which pro-

duce 1,25(OH)2D are regulated by cytokines (e.g.,

interferon-gamma), lipopolysaccharide, nitric oxide and

intracellular VDBP, which activate the enzyme CYP27B1

to stimulate conversion of 25(OH)D to 1,25(OH)2D [142].

This extra-renal production of 1,25(OH)2D in tissues

infected with intracellular bacteria can result in an excess

in production of 1,25(OH)2D which may contribute to

depletion and low levels of 25(OH)D [143] (Fig. 4).

Because extra-renal production of 1,25(OH)2D is pri-

marily dependent on the availability of 25(OH)D [144],

supplementation with vitamin D to increase 25(OH)D may

promote the production of 1,25(OH)2D in non-renal tissues
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that are sites of intracellular infection and result in

hypervitaminosis-D. Sunlight appears to play a part in this

process and many patients with autoimmune disease report

sun sensitivity. The skin (dermal fibroblasts and keratino-

cytes possess VDR) has the capacity to synthesize

1,25(OH)2D, and represents an important target tissue for

1,25(OH)2D [145]. If keratinocytes in the skin are infected,

natural regulation of photosynthesis may be thwarted and

solar energy may overstimulate cellular activity, resulting

in an increase in cutaneous production of vitamin D3,

25(OH)D and 1,25(OH)2D following sun exposure.

We hypothesize that when nucleated cells are parasit-

ized by intracellular bacteria, extra-renal production of

1,25(OH)2D increases, the kidneys lose control of

1,25(OH)2D production, and pro-hormone 25(OH)D

decreases due to rapid conversion to 1,25(OH)2D. The

following mechanisms are thought to be responsible

(Fig. 5):

• Inflammatory cytokines activate CYP27B1, an enzyme

that causes more 25(OH)D to be converted to

1,25(OH)2D [146].

• The microbial-repressed VDR cannot transcribe

CYP24A1 (formerly 24-hydroxylase), an enzyme that

breaks down excess 1,25(OH)2D [147].

• Excess 1,25(OH)2D binds the PXR (pregnane X

receptor), to inhibit conversion of vitamin D3 to

25(OH)D so 25(OH)D is down-regulated [148].

• 1,25(OH)2D inhibits the hepatic synthesis of 25(OH)D

[149].

Thus, low 25(OH)D may be a consequence of the

inflammatory process. More studies are concluding that

suboptimal circulating levels of vitamin D appear to be

caused by the disease process. Waldronn et al. [150] found

serum 25(OH)D was decreased following an acute

Fig. 4 Proposed hypothesis for

excess 1,25(OH)2D production

in bacterially-stimulated extra-

renal tissues. Extra-renal

tissues, which produce

1,25(OH)2D, are regulated by

cytokines, lipopolysaccharide,

nitric oxide and intracellular

VDBP, which activate the

enzyme CYP27B1 to stimulate

conversion of 25(OH)D to

1,25(OH)2D, resulting in low

25(OH)D

Fig. 5 Proposed hypothesis for dysregulated vitamin D metabolism

caused by intracellular pathogens. Theoretically, when nucleated cells

are parasitized by intracellular bacteria, extra-renal production of

1,25(OH)2D increases, the kidneys lose control of 1,25(OH)2D

production, and pro-hormone 25(OH)D decreases due to rapid

conversion to 1,25(OH)2D
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inflammatory insult (i.e., orthopedic surgery) and con-

cluded that hypovitaminosis-D may be the consequence

rather than cause of chronic inflammatory diseases. Ferder

et al. [151] state, ‘‘…there may be a relationship between

inflammatory processes induced by chronic overstimula-

tion of the renin angiotensin system (RAS) and the

worldwide vitamin D deficiency. In fact, the pandemic of

vitamin D deficiency could be the other face of increased

RAS activity, which could potentially cause a lower

activity or lower levels of Vitamin D.’’

Diagnosis of dysregulated vitamin D metabolism

Assessing dysregulated vitamin D metabolism has the

potential to guide clinical practice [152, 153]. Vitamin D

status is currently determined by measuring the level of

serum 25(OH)D which, presumably, reflects the serum

levels of other vitamin D metabolites (e.g., vitamin D3,

vitamin D2 and 1,25(OH)2D, etc.). This measurement may

not, however, provide enough information to assess vitamin

D endocrine function. The clinical utility of measuring

1,25(OH)D is not fully understood, but it is clear that

associations are being made between this active metabolite

of vitamin D and disease states [154]. 1,25(OH)2D is not

being used as a measure associated with vitamin D nutri-

tional status or as an intermediate marker related to health

outcomes, or even routinely assessed in vitamin D research.

In the context of solving the puzzle of low 25(OH)D, the

reasons cited for this lapse fail to consider the possibility of

abnormal levels in the presence of chronic inflammation:

• 1,25(OH)2D has a short half-life (hours) and fluctuates

rapidly.

However, a high result may be discovered even at

trough level.

• 1,25(OH)2D levels are regulated by PTH, calcium,

phosphate.

This is not true if extra-renal production is prevalent

[143].

• 1,25(OH)2D does not decrease until 25(OH)D is very

low.

A low 25(OH)D may be a sign that 1,25(OH)2D is

abnormally high [55].

• 1,25(OH)2D is only over-produced in hypercalcemic

disease states such as sarcoidosis.

Studies show this is not true [42].

• 1,25(OH)2D may be elevated as a result of up-

regulation of the CYP27B1 enzyme.

This begs the question, Why is this enzyme elevated

[146]?

Measuring both 25(OH)D and 1,25(OH)2D (and PTH,

calcium, phosphate when indicated) as clinical markers in

chronic disease is more likely to provide a true picture of

vitamin D status, than measuring 25(OH)D alone [155,

156] (Table 1). Measuring 1,25(OH)2D should be consid-

ered in patients with low 25(OH)D, abnormal laboratory

results (especially inflammatory markers), a diagnosis of

autoimmune disease or other chronic inflammatory illness,

or signs of chronic systemic inflammation. For example,

elevated 1,25(OH)2D may serve as a marker of Crohn’s

disease [52]. The 1,25(OH)2D test is a delicate assay which

is only done in specialized laboratories. False low results

have been observed due to apparent sample mishandling;

freezing for transport is advised to prevent sample degra-

dation due to agitation. A high result is always accurate.

Restoration of VDR competence

The ability to mount an appropriate immune system

response to intracellular infection is highly dependent on a

competent VDR [159]. When it appears that 1,25(OH)2D is

unable to up-regulate the VDR due to microbial activity,

VDR competence may be restored with another VDR

ligand which acts as an agonist; an agonist increases the

signal transduction activity of a cell when bound to a

receptor on that cell. Over 3000 synthetic VDR ligands

have been identified, but most of these 1,25(OH)2D ana-

logues have no clinical use because of their undue

disruption to calcium regulation [160]. A number of non-

vitamin D VDR ligands have also been identified: curcu-

min, omega-6 fatty acids (e.g., arachidonic acid, linoleic

acid), and lithocolic acid (LCA) but are not being used for

this purpose [161, 162].

Angiotensin receptor blockers (ARBs) have been

shown, via in silico molecular modeling, to modulate VDR

activation [163]. The most promising ARB, olmesartan

medoxomil (brand name Benicar�) was estimated to have a

Ki value in the low nanomolar range, similar to the Ki

values of the natural VDR ligands [163]. Olmesartan has

been noted to cause a significant reduction in elevated

1,25(OH)2D within weeks of initiation, which provides

Table 1 D-metabolites tests

Serum 25(OH)D [157]

CPT code: 82306 [157]

Lowest mortality reported at 20 ng/ml [158]

Immunosuppression reported when higher than 30 ng/ml [122]

Serum 1,25(OH)2D [157]

CPT code: 82652 [157]

ICD-9 code:

275.40 Disorder of calcium metabolism, unspecified [157]

Maximum normal = 45 pg/ml [17]
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further evidence of its ability to up-regulate the VDR

[164]. Olmesartan is believed to decrease elevated

1,25(OH)2D by several VDR-mediated effects (Fig. 6).

The up-regulated VDR:

• transcribes CYP24A1 and CYP3A4 (enzymes which

reduce 1,25(OH)2D production) [147].

• represses CYP27B1 (the enzyme that hydroxylates

25(OH)D to 1,25(OH)2D) so less 1,25(OH)2D is

produced [146].

Consequently, renal control of 1,25(OH)2D production

is restored and extra-renal production of 1,25(OH)2D is

reduced. A decrease in elevated 1,25(OH)2D means less

systemic inflammation, as these studies of olmesartan

indicate:

• Improvement of glycemic control and insulin resistance

was only observed in the olmesartan group and these

effects of olmesartan might be mediated by an anti-

inflammatory action [165].

• Olmesartan treatment significantly reduced serum lev-

els of inflammatory markers; h-CRP, h-TNFa, IL-6,

MCP-1 after 6 weeks of therapy [166].

• Blocking angiotensin-converting enzyme induces

potent regulatory T cells and modulates TH1- and

TH17-mediated autoimmunity [167].

• Blocking angiotensin II receptor increases bone mass

[168, 169].

Olmesartan acts in a manner similar to 1,25(OH)2D to

reduce inflammation and, by inference, improve immune

system function. VDR and RAS receptors are distributed in

almost the same tissues. The endogenous VDR ligand

1,25(OH)2D down-regulates the RAS by repressing renin

gene expression to reduce inflammation via the nuclear

factor-kappa B pathway [170]. Olmesartan has a similar

effect in that it reduces angiotensin II (a peptide that is

implicated in the inflammatory process) [171]. Inappro-

priate stimulation of the RAS has been associated with the

pathogenesis of hypertension, heart attack and stroke [151].

Ferder et al. [151] state, ‘‘Changes in RAS activity and

activation of the VDR seem to be inversely related, making

it possible to speculate that both systems could have a

feedback relationship. The combination of RAS blockade

and VDR stimulation appears to be more effective than

each one used individually.’’ Blocking angiotensin II and

stimulating the VDR is what olmesartan appears to

accomplish and this function is consistent with a theory of

VDR incompetence (Fig. 7).

In patients with autoimmune disorders and inflammatory

symptoms, olmesartan is noted to provoke an increase in

inflammatory symptoms indicative of a Jarisch–Herxhei-

mer reaction (JHR). JHR is a cascade of reactions including

inflammation, cytokine release, and endotoxin release as

part of the immune response to the disintegration of

infected cells [172]. This immunopathology suggests

transcription of AMPs by an activated VDR, points to the

presence of occult infection and provides additional evi-

dence that olmesartan is a VDR agonist [167, 173, 174].

Theoretically, olmesartan restores VDR competence and,

thus, phagocytosis leads to bacterial death; consequently,

inflammation is temporarily increased by cytokine reaction

to microbial endotoxins and cellular debris from dead host

cells and bacteria [175].

Hajishengallis and Lambris [92] conclude that a block-

ade of hijacked receptors of the innate immune system may

offer promising options to control infection and associated

immunopathology. Although this use of olmesartan is off-

label, its safety profile is well established [176]. The

multiple, documented beneficial effects of olmesartan,

including the ability to reduce cardiovascular and kidney

disease, prevent migraines, and reduce oxidative stress,

also suggest it could play a key role in the resolution of

chronic systemic inflammation [177, 178].

Clinical use of olmesartan

Olmesartan is being used as a novel VDR ligand in the

clinical setting [179]. Immunotherapy with olmesartan may

also include pulsed administration of select MIC (mini-

mum inhibitory concentration) oral antibiotics to weaken

and help eradicate the intracellular pathogens. With each

antibiotic dose, inflammatory symptoms (JHR) wax and

wane, providing further evidence of persistent infection

[180]. Changes in laboratory findings (e.g., BUN, creati-

nine, CRP, blood counts, liver enzymes) often point to

areas of occult inflammation. A correlating treatment

Fig. 6 Proposed hypothesis for restoring renal control of

1,25(OH)2D with olmesartan. Olmesartan is believed to decrease

elevated 1,25(OH)2D by several mechanisms
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strategy is the avoidance of excessive sunlight exposure,

foods high in vitamin D and vitamin D supplements to

maintain serum 25(OH)D at a level (20–30 ng/ml) that is

not likely to suppress the immune system and inhibit

bacterial elimination [122, 135, 137].

Accumulating case reports now support the observation

that a number of complex, chronic conditions can be

improved by restoring VDR function using this type of

immunotherapy [179, 181, 182]. It is becoming increas-

ingly clear that microbes slow down immune reactivity by

dysregulating the VDR, ultimately to increase their chance

of survival. Immune modulatory therapies that enhance

VDR expression and activity should, therefore, be con-

sidered in the clinical setting [183].

Discussion

Vitamin D is essential for many important biological pro-

cesses and most people get an adequate supply from

exposure to sunlight (Table 2). Long-term studies are

needed to determine if low 25(OH)D in healthy individuals

leads to disease. Evidence that vitamin D supplementation

cures or prevents chronic disease is inconsistent. Despite

increased supplementation chronic inflammatory diseases

are on the rise. Attention to the alternate hypothesis—low

25(OH)D is a consequence of the chronic disease process,

provoked by persistent intracellular infection—may be

crucial to reversing this trend and needs further research.

The prevailing dogma that the level of serum 25(OH)D

provides an accurate assessment of vitamin D status needs

closer examination. Circulating levels of 25(OH)D may not

be an accurate reflection of vitamin D status. In those with

an autoimmune disease or chronic inflammatory symp-

toms, 1,25(OH)2D may be elevated. This can lead to

osteoporosis and cause inhibition of innate immunity,

which is contraindicated in the presence of infection. The

resulting immunosuppression may promote persistent

Fig. 7 Effect of treatment with

olmesartan and antibiotics on

inflammatory symptoms.

Olmesartan up-regulates the

vitamin D receptor to improve

innate immune system function

and reduce elevated

1,25(OH)2D. Avoidance of

immunosuppressants and

elevated 25(OH)D also

improves immune system

function. Inflammatory

symptoms gradually resolve as

intracellular bacteria are slowly

eliminated with the help of

select low-dose, pulsed

antibiotics

Table 2 Key points

Vitamin D is a steroid hormone which regulates immune system

function

Photosynthesis of vitamin D3 provides adequate vitamin D stores for

most individuals

Low levels of 25(OH)D are seen in healthy individuals, as well as

those with chronic inflammatory conditions

Studies are inconsistent regarding the health benefits of increasing

vitamin D stores; vitamin D supplementation may have negative

effects

25(OH)D may not always reflect the level of 1,25(OH)D; accurate

assessment of vitamin D status depends on measuring both

metabolites

Intracellular, cell wall deficient bacteria may cause dysregulated

vitamin D metabolism and impaired immune system function

A novel, non-vitamin D VDR ligand (an angiotensin receptor blocker)

appears to reactivate the immune system, restore VDR competence,

correct dysregulated vitamin D metabolism and reduce

inflammatory symptoms
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infection which has been implicated in chronic inflamma-

tory diseases.

Human cells live in harmony with many types of

microbes but some microbes may become pathogenic under

commonly experienced conditions. The innate immune

system is designed to kill pathogens via 1,25(OH)2D-

mediated VDR transcription of anti-microbial peptides but

microbes may use strategies which down-regulate the VDR

in order to live and reproduce within nucleated host cells.

Studies using more advanced cell culture and molecular

techniques are confirming the presence of previously

undetected intracellular bacteria. Defense mechanisms that

intracellular bacteria use to persist and proliferate need to be

investigated. Pathogen-induced VDR dysfunction which

causes the release of pro-inflammatory cytokines appears to

be at the root of chronic disease and low 25(OH)D.

Improving VDR activation may be the key to reducing

inflammatory diseases. Treatments that up-regulate the

VDR to restore normal immune function, reduce inflam-

mation and eradicate persistent bacterial infections require

further research. An immunotherapy which has demon-

strated efficacy in reversing vitamin D metabolism

dysfunction and reducing inflammatory symptoms is cur-

rently being used by clinicians and warrants formal study.

In summary, elevated 1,25(OH)2D, often accompanied

by reduced 25(OH)D, is a clinical sign of dysregulated

vitamin D metabolism and evidence that the immune sys-

tem is competing with parasitic microbes for VDR

dominance. Failure of the immune system to mount an

effective anti-microbial response results in persistent

intracellular infection. This induces relentless inflammation

(immunopathology) which causes tissue damage and dis-

ease symptoms.
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